
Executive Summary
FUJIFILM VisualSonics (VSI) Artificial Intelligence-based measurement 
tools are extremely valuable for pre-clinical researchers analyzing small 
animal models in studies of human disease. Taking advantage of micro-
ultrasound technology, these tools free researchers from time-consuming 
and error-prone manual procedures. 

Like many AI tools, VSI’s AutoLV Analysis 
software is highly compute-intensive and 
makes significant performance demands 
on underlying Intel Core processors to keep 
automated analysis user-friendly. Recently, 
VSI and Intel partnered to maximize the 
performance of AutoLV Analysis software 
by optimizing Deep Learning models using 
the Intel Distribution of OpenVINO Toolkit, 
resulting in increased ease of deployment 
and tremendous inference performance 
improvement. 

FUJIFILM: Advancing Ultrasound Technology
VisualSonics designs and manufactures the world’s highest resolution 
ultrasound and photoacoustic instruments. These systems operate at up to 
70 MHz, enabling customers to image structures as small as 30 microns—
features that are invisible to conventional ultrasound devices. 

Used in many areas of pre-clinical research, VSI products enable 
researchers to study live animals in real-time, longitudinally, while 
eliminating safety issues and side effects encountered with other imaging 
modalities.

VSI is a subsidiary of FUJIFILM Sonosite, and both belong to a group of 
companies under FUJIFILM Healthcare. Sonosite also produces ultrasound 
products to serve different markets. VSI designs and develops tools for 
pre-clinical research, whereas Sonosite provides point-of-care ultrasound 
systems and medical informatics to physicians and clinicians, with the goal 
of enabling them to improve procedure efficiency, time-to-diagnosis, and 
patient outcomes. 

Sonosite and VSI partner closely to enable technologies to migrate from 
pre-clinical research directly to important patient care solutions. 
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Left Ventricle (LV) Analysis
Cardiovascular researchers represent the largest base of 
VSI’s pre-clinical customers. Left Ventricle (LV) analysis 
plays a crucial role in research aimed at alleviating human 
diseases. The metrics revealed by LV analysis enable 
researchers to understand how experimental procedures are 
affecting the animals they are studying. LV analysis provides 
critical information on one of the key functional cardiac 
parameters, ejection fraction, which measures how well the 
heart is pumping out blood and is key to diagnosing and 
staging heart failure. LV analysis also calculates several other 
standard cardiac function parameters, including fractional 
shortening, stroke volume, and cardiac output. A thorough 
understanding of these factors helps researchers to produce 
valid, valuable study results. 

In addition, LV analysis has a growing role to play in the 
clinical care of human patients. The ability to display critical 
cardiac parameters in real time enables medical care 
providers to make a diagnosis more quickly and accurately 
during ultrasound interventions, without needing to stop 
and take measurements manually or to send images to the 
radiology department.

AutoLV Analysis Software
Efficient, reproducible analysis of imaging data is critical 
to research goals, both in the public and private sectors. 
AutoLV Analysis Software, VSI’s Artificial Intelligence-based 
measurement product, is a fast and accurate tool for analysis 
of cardiovascular imaging data.

Building on VSI’s widely adopted LV Analysis Tool, 
AutoLV Analysis brings AI to the functional analysis of 
the left ventricle in small laboratory animals with a “one-
click” solution for both B-Mode and M-Mode research. 
Measurement and analysis of imaging data requires a 
significant investment of time and can sometimes be 
subject to inter-operator variability. Reliable, reproducible 
measurement data is the key to understanding model 
animal anatomy and physiology, and for completing studies, 
publishing work, and all other aspects of small animal pre-
clinical research. AutoLV Analysis software makes functional 
and anatomical analysis of the left ventricle fast, highly 
reproducible, and free from manual error.

M-Mode and B-Mode
AutoLV Analysis provides two automated approaches to left 
ventricle analysis: M-Mode AutoLV and B-Mode AutoLV.

An M-Mode ultrasound—the M stands for “Motion”—
examines a line of motion over time. When used in 
echocardiography, M-mode displays the movement of the 
myocardium, enabling accurate real-time measurements of 
the thickness of the heart wall, internal diameter, and heart 
rate. These measurements enable the calculation of key heart 
parameters, including ejection fraction.

In using the M-Mode method, researchers must calculate 
cardiac functional parameters acquired from the parasternal 
long-axis view. Typically, this involves making manual 
measurements of the thickness of the interventricular 
septum (IVS) or the right ventricle (RVID), the left ventricular 
interior diameter (LVID), the left ventricle posterior wall 
(LVPW—see Figure 1) at both systole (;s) and diastole (;d), and 
the heart rate.

B-Mode (Brightness, or 2D mode) ultrasounds differ from 
M-Mode in that they show a single image at a given point 
in time: a two-dimensional ultrasound image composed of 
pixels representing ultrasound echo intensity. As in the case 
of M-Mode data, researchers can use B-Mode images to 
measure and quantify anatomical structure. 

Both M-Mode and B-Mode are critical in assessing cardiac 
function, and both present problems for researchers. The 
challenge is that acquiring M-Mode or B-Mode measurements 
manually is laborious, time-consuming, and subject to human 
error, especially considering that both multiple systolic and 
diastolic points must be measured to provide data for cycle 
averaging. 

Answering the Challenge
VSI invented AutoLV Software to help solve these problems 
for researchers. AutoLV automates the measurement 
process, removing the element of human subjectivity. 
These completely automatic measurements capture real-
time details of the endocardial and epicardial borders 
(see Figure 2), facilitating the rapid calculation of cardiac 
functional parameters. Because it requires virtually no user 
intervention, AutoLV Software reduces both errors and the 
time required to achieve usable results. 
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Figure 1 . M-Mode thickness measurements of the anterior 
wall, chamber, and posterior wall—sometimes referred to as 
the “string method.”

Figure 2 . 4-Wall LV Trace of the endocardial border across 
multiple cycles.
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The problems that AutoLV Software solves are challenging 
ones, due to both the inherent variability of ultrasound 
images and the difficulty of creating an algorithm that 
can accommodate this variability with sufficient accuracy 
to produce usable, valuable results. At this time, no 
other product on the market provides the features and 
functionalities that AutoLV Software delivers.

Intel Technology Makes It Possible 
As an AI tool, AutoLV requires a platform that is powerful, 
flexible, and reliable. Both VSI and Sonosite rely on systems 
equipped with Intel® technology, including Intel Core i7 and 
i5 processors, as well as Intel Atom® processors. Running 
these systems enables VSI software developers to take 
advantage of the Intel Distribution of OpenVINO Toolkit. 
The toolkit, designed for Open Visual Inference and Neural 
Network Optimization (OpenVINO), makes it possible to 
harness the full potential of AI and computer vision. Based 
on Convolutional Neural Networks (CNN), the toolkit extends 
processing across Intel hardware (including accelerators) to 
maximize performance on demanding workloads, such as 
those AutoLV Software generates.

AutoLV would not be practical (or 
user-friendly) without the performance 
Intel technology delivers. Prior to the 
toolkit’s availability, engineers at VSI 
could run deep learning solutions only 
as a post-processing operation with 
inference times on the order of hundreds 
of milliseconds per frame on the system 

CPU. With the introduction of the OpenVINO feature set, VSI 
can now optimize models directly for the CPU and integrated 
GPU. This has resulted in a 41 .4x speedup in inferencing 
processing.¹

To help generate these improvements, VSI also took 
advantage of the Intel® Integrated Processing Primitives 

(Intel® IPP) library, an extensive set of ready-to-use, domain-
specific functions that are highly optimized for diverse Intel 
architectures. Using Single Instruction Multiple Data (SIMD) 
instructions, the library helps improve the performance of 
compute-intensive workloads and accelerates processing 
speed while simplifying code development. 

In addition, they leveraged OpenCV, a complimentary toolkit 
optimized for Intel architecture. Working in conjunction 
with Intel IPP, OpenCV improves the processing of real-time 
images and provides additional analytics and deep learning 
capabilities.

The implementation of these Intel technologies, both on the 
hardware and the software side, makes it possible to offer 
imaging applications in real time, even when using only an 
Intel CPU without relying on the integrated GPU.

The VisualSonics Solution 
To establish the viability of AutoLV as a practical application, 
tests were performed on hardware similar to that found in 
actual laboratory environments. Intel Core i7 processor-
based systems were used for the tests. The tests ran Deep 
Learning methodologies (Artificial Intelligence and Neural 

The purpose of FUJIFILM VisualSonics:
“Through bold innovation, we 

empower those dedicated to the 
advancement of human health.”

Under the hood: Intel® Distribution of OpenVINO™ toolkit
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Under the Hood: Intel Distribution of OpenVINO Toolkit 
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Networks) trained on research images generated at VSI.

The M-Mode AutoLV algorithm was then used to compare 
performance. Deep Learning inference optimization was 
compared using models converted for 1) TensorFlow, and 2) 
the Intel® Distribution of OpenVINO™ toolkit.

The Solution Model
The key aspect of AutoLV is the automatic measurement 
of the interior (endocardial) and exterior (epicardial) heart 
wall boundaries in M-Mode and the interior wall boundary 
in B-Mode. These boundaries can be used to obtain the 
measurements needed to calculate cardiac functional 
metrics. Because of the extreme variations in input data and 
the difficulty in trying to describe a procedure for performing 
these traces, deep learning was leveraged to provide a 
solution. Alternatives to deep learning were considered, 
including non-AI-based segmentation algorithms, but past 
experiences have shown that those lack the needed accuracy 
and consistency. Neural networks, on the other hand, have 
empowered thousands of applications where other methods 
have failed, and therefore were selected for the application.

For a deep learning algorithm to succeed, three features 
are required: an abundance of labeled input data, a suitable 
deep learning model, and successful training of the model 
parameters.

M-Mode Solution Process
Data for M-Mode training consisted of VisualSonics data 
sets from a variety of animal models acquired under 
different conditions. Collected over a period of many years, 
this data represents a very diverse set of input conditions. 
Approximately 2,000 data sets were selected, and Vevo LAB 
was used to carefully label the four walls in each segment 
for use in training, as shown in Figure 3. 4-8 heart cycles 
were traced for each sample, with each data set taking 
approximately 1-2 minutes to trace manually.

To generate training data, a completely traced M-Mode 
region was divided into smaller “chunks” of data and 
separated into wall-pairs. Each chunk was treated as an 
individual training example. A complete region could be 

several heart cycles and perhaps 500ms. long; breaking 
it into chunks, each piece might be as little as 100ms. The 
training set thus consisted of approximately 10,000 unique 
training examples from 2,000 unique data sets. Data was 
formatted using C++ and Python for use in an end-to-end 
TensorFlow/Keras training framework.

Models were set up to handle inner walls separately from 
outer walls; while these could have been designed to detect 
all four walls at the same time, the decision was made to 
handle them separately to increase system flexibility.

The final processing flow is shown in Figure 5. Initially, a  
MobileNet V2-based model was developed², which took a 
raw M-Mode chunk of data formatted as a 256 x 128 image 
as input and then output the relative top and wall positions 
directly for each vertical line in the image (256 * 2). (See 
Figure 6a and 6b.)

Figure 4 . Four “chunks” of outer wall and inner wall pairs.

Figure 5 . M-Mode processing methodology using MobileNet.

Select region of 
M-Mode to be traced

Separate region into 
‘chunks’ with overlap

Blend results 
together

Generate splines 
from inference results

Inference to obtain 
outer-wall positions

Inference to obtain 
inner-wall positions

Figure 3 . Four walls labeled.

https://www.visualsonics.com/product/software/vevo-lab
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TensorFlow vs. Intel Distribution of OpenVINO Toolkit
After the model was developed, a compiled version of 
TensorFlow running on a Windows system was used 
to perform the inferencing, which ran only on the CPU. 
The result was extremely complex and time consuming. 
Compiling TensorFlow from source requires a number of 
external tools and generates a large, cumbersome set of 
libraries. In addition, inference times are slow. Tracing an 
entire data set requires a number of chunks (10 or more) to 
be processed, and the processing time for an entire data set 
could be several seconds.  

Next, the Intel Distribution of OpenVINO Toolkit was used for 
the inference workload. The toolkit’s library was incorporated 
into the test application, and Model Optimizer was used to 
convert the original trained model to Internal Representation 
(IR) format. The results were very different than those 
seen with TensorFlow; they were significantly simpler, and 
inference times were reduced to 3.1 ms.¹ In addition, the 
toolkit enabled us to run half the inference operations on the 
CPU and the other half on the processor’s integrated GPU, 
dividing the processing between two parallel CPUs. What is 
especially significant here is that the integrated GPU was a 
low-power, general purpose GPU, similar to what is found on 
most consumer PCs—not a high end, high power GPU that 
might be found only on a more expensive AI system. 

Input Operator t c n s

256x128x1 conv2d - 32 1 2

128x64x32 bottleneck 1 16 1 1

128x64x16 bottleneck 6 24 2 2

64x32x24 bottleneck 6 32 3 2

32x16x32 bottleneck 6 64 4 2

16x8x64 bottleneck 6 96 3 1

16x8x96 bottleneck 6 160 3 2

8x4x160 bottleneck 6 320 1 1

8x4x320 conv2d 1x1 - 1280 1 1

8x4x1280 glbavgpool 8x4 - - 1 -

1x1x1280 dense 512 - - - -

512 output - - - -

Figure 6a . MobileNet model architecture. 

Improved inference times using the toolkit provided the 
freedom to develop more complex models without fear of 
overtaxing the hardware. An improved implementation of 
the M-Mode AutoLV system used a larger, more complex 
U-Net model to generate a segmentation region between the 
wall boundaries, as shown in Figure 7. The U-Net was able to 
generate segmentation regions that were more accurate than 
the original MobileNet solution. 

The U-Net model was trained to segment the region within 
the wall boundaries. The inference stages were the same 
as with the original MobileNet model. However, instead of 
getting the relative wall positions directly from the model, 
a segmentation of this region was used. The modified 
methodology is shown in Figure 8. It was not difficult to 
trace the top and bottom edges of the segmentation map to 
obtain the final wall positions. To further optimize inference 
times, the size of the chunks was increased to require fewer 
inferences. 

256x128
(Input)

256x2
(Output)

MobileNetV2 
Backbone

Linear Activation

Dense Layer
x512

Figure 6b . MobileNet model architecture.

Figure 7 . Segmentation of inner walls.
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B-Mode Solution Process
Tracing wall boundaries in B-Mode is a difficult task. In 
this case, all frames had to be traced between systole and 
diastole (see Figure 9). 

Approximately 2,000 PSLAX data sets were collected in the 
parasternal long-axis view, and the inner wall boundaries 
were traced over a number of cycles. The acquisition frame 
rate, which depended on the transducer and imaging settings 
used, varied from 100 to 1,000 fps. That meant 30 to 100 
individual frames were traced for each cine loop. By the end, 
a collection of over 150,000 unique images were assembled 
for training. Training augmentation included horizontal flip, 
noise, contrast, brightness, and deformable image warp.

In the interest of efficiency and simplicity, a 2D model design 
was chosen to trace each frame individually. While a 3D 
model could be used (or perhaps even a recurrent model to 
handle the video nature of the moving heart), a 2D model 
was used because it enabled an accurate but much simpler 
training system.  A U-Net model with an input and output size 
of 128 x 128 was trained on a segmentation map of the inner 
wall region. The total number of parameters for this model 
was 2,736,451.

Training was performed on an NVIDIA VT100 GPU and took 
several hours to complete using the TensorFlow/Keras-based 
training framework. 

The processing methodology is somewhat different than in 
M-Mode. While the inference is processed separately for each 
frame, what the user requires is a cine-loop of processed 
frames for a complete heart cycle. To accomplish this, after 
2D inferencing of each frame in a cycle, post processing is 
performed to improve the overall accuracy (see Figure 10). 

Select region of 
M-Mode to be traced

Separate region into 
‘chunks’ with overlap

Blend results 
together

Generate splines 
from inference results

Edge tracing to �nd 
outer-wall positions

Edge tracing to �nd 
inner-wall positions

Inference to obtain 
outer-wall 

segmentation

Inference to obtain 
inner-wall 

segmentation

Figure 8 . Updated M-Mode processing methodology using 
U-Net.

Figure 9 . Tracing boundary walls in B-Mode.

Select region of data 
set to process

Perform segmentation 
inference on each frame

Perform intra-frame 
comparisons to 

remove anomalous 
inference results

Calculate apex and 
out�ow points

Generate smooth 
splines from edge map

Compute edges of 
each inference region

Figure 10 . B-Mode processing methodology.



7

White Paper | FUJIFILM VisualSonics Accelerates AI for Ultrasound with Technologies from Intel

Performance Comparison
To evaluate the speedup enabled by the Intel Distribution of 
OpenVINO Toolkit, a test comparison was performed using 
the M-Mode MobileNet solution. 

The model used in testing was a close variant of MobileNet 
V2 used for the M-Mode solution. No model optimization was 
performed for the TensorFlow version. The IR version had 
default model optimizations applied. 

TensorFlow version 1.4.0 was used, compiled with Visual 
Studio 2015, using full release optimizations (/O2 and /Ob2) 
and the Extended instruction set (/arch:AVX) for x64 bit. The 
final library size was 1.53 GB, including release and debug 
DLLs; it required 4,415 include files. The optimized Intel 
version of TensorFlow was not available for Windows and as 
such was not available for testing.

The Intel Distribution of OpenVINO Toolkit model used 
version 2019.2.242. 

Tests were performed using Microsoft Windows 10, with no 
other applications running.

Comparison Results
Using Version 1 of the M-Mode AutoLV algorithm to compare 
the model converted for TensorFlow to the model converted 
using the Intel Distribution of OpenVINO Toolkit produced 
the results shown here.

TensorFlow Model
The TensorFlow image required running three inference 
blocks each for the inner and outer walls, for a total of 6 
blocks. The test was run four times. Two models for the inner 
and outer sections were run in parallel, resulting in an overall 
performance improvement.

Inner Wall Outer Wall
Inner + Outer Parallel 

(2 Threads)

Trial 1 (MS) 773 .7 776 .0 776 .2

Trial 2 (MS) 768 .1 780 .2 781 .5

Trial 3 (MS) 765 .2 777 .3 777 .5

Trial 4 (MS) 762 .3 774 .3 774 .4

Average 777 .8

The average time per inference (6 per trial) was 129 .6 ms.¹

Intel Distribution of OpenVINO Toolkit Model
Because OpenVINO is very fast on tasks such as these, we 
decided to add more processing blocks, with extra overlap, in 
hopes of improving results. For the test image, 16 inference 
operations were required for each of the inner and outer 
walls (32 operations in total). Processing was done as a 
review (not as a real-time operation). No attempts were made 
to split processing between the CPU and the integrated GPU, 
opting only for CPU inference. In addition, the inner and outer 
walls were processed synchronously (though each of those 
inference operations was threaded internally by the toolkit's 
library).

Inner Wall Outer Wall Inner + Outer

Trial 1 (MS) 45 .2 45 .9 91 .2

Trial 2 (MS) 46 .7 45 .0 91 .8

Trial 3 (MS) 44 .8 47 .9 92 .9

Trial 4 (MS) 59 .8 64 .6 124 .6

Average 100 .1

The average time per inference (32 per trial) was 3 .1 ms.¹ 

Conclusion
As these charts make clear, the TensorFlow model test 
resulted in an average time per run of 129.6 ms. The Intel 
Distribution of OpenVINO Toolkit test, on the other hand, 
resulted in an average time per run of 3.1 ms. In other terms, 
the toolkit's model, running on an Intel Core i7 processor-
based system, ran 41 .4x times faster than the TensorFlow 
model.¹ 

Figure 11 . Image used to generate performance comparison. 
The trace duration was approximately 643ms. 

Average Time Per Inference¹
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Working Together for a Better Future
Two FUJIFILM companies, VisualSonics and Sonosite, 
with very different markets and customers, have found 
common ground upon which to build tools that will lead to 
improvements in human health.

FUJIFILM Sonosite develops clinical ultrasound systems 
with particular emphasis on point-of-care and portable 
systems. Sonosite products are used by physicians and other 
medical staff in the treatment of patients. These clinicians are 
continually looking to deliver improved patient care resulting 
in better patient outcomes.  

These two companies maintain constant communications 
and collaborate closely about the ever-changing technology 

they work with. Improvements discovered by one group often 
have real and immediate value for the other group. It’s certain 
that the success of the Intel Distribution of the OpenVINO 
Toolkit model running on Intel® processor-based hardware 
will prove to be as relevant for the clinical side as it has been 
for researchers.

In addition, Intel Corporation is constantly developing new 
ways to harness silicon designed specifically for AI, both in 
stand-alone applications like AutoLV Software and in end-to-
end solutions that span from the data center to the edge. As 
the tests outlined above make clear, Intel architecture-based 
systems are delivering on the promise of AI today, with much 
more to come.
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FUJIFILM VisualSonics: 
Visualsonics.com/about-us/our-company

FUJIFILM Sonosite: 
Sonosite.com/about

Intel Core Processors: 
Intel.com/core

Intel AI Technologies: 
Intel.com/ai

Intel Distribution of OpenVINO Toolkit, 
Powered by OneAPI: 
Intel.com/openvino

Intel Health and Life Sciences Technologies:
Intel.com/healthcare
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