Three-Dimensional High-Frequency Ultrasonography for Early Detection and Characterization of Embryo Implantation Site Development in the Mouse

Mary C. Peavey, Corey L. Reynolds, Maria M. Szwarc, William E. Gibbons, Cecilia T. Valdes, Francesco J. DeMayo, John P. Lydon
PLOS ONE2017
Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction in silico of high-frequency ultrasound (HFUS) imaging data for early detection and characterization of murine embryo implantation sites and their development in utero. With HFUS imaging followed by 3-D reconstruction, we were able to precisely quantify embryo implantation site number and embryonic develop- mental progression in pregnant C57BL6J/129S mice from as early as 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. using a VisualSonics Vevo 2100 (MS550S) transducer. In addi- tion to measurements of implantation site number, location, volume and spacing, embryo viability via cardiac activity monitoring was also achieved. A total of 12 dams were imaged with HFUS with approximately 100 embryos examined per embryonic day. For the post- implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in mesh or solid overlay format enabled visual representation in silico of implantation site location, num- ber, spacing distances, and site volume within each uterine horn. Therefore, this short tech- nical report describes the feasibility of using 3-D HFUS imaging for early detection and analysis of post-implantation events in the pregnant mouse with the ability to longitudinally monitor the development of these early pregnancy events in a non-invasive manner. As genetically engineered mice continue to be used to characterize female reproductive pheno- types, we believe this reliable and non-invasive method to detect, quantify, and characterize early implantation events will prove to be an invaluable investigative tool for the study of female infertility and subfertility phenotypes based on a defective uterus.
Share

Request a Quote or Demo

Contact Us