PKCβ/NF-κB pathway in diabetic atrial remodeling

Haili Wang, Yuanyuan Xu, Aiqing Xu, Xinghua Wang, Lijun Cheng, Sharen Lee, Gary Tse, Guangping Li, Tong Liu, Huaying Fu
Journal of Physiology and Biochemistry2021
Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)–induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose–induced NF-κB and extracellular signal–related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.
Share

Want to see more papers in your research area? 

Get a customized bibliography.

Request Now

Publication Right Sidebar