Impact of Chronic Hypoxia on Proximal Pulmonary Artery Wave Propagation and Mechanical Properties in Rats

Junjing Su, Charmilie C Logan, Alun D Hughes, Kim H Parker, Niti M Dhutia, Carl Christian Danielsen, Ulf Simonsen
American Journal of Physiology-Heart and Circulatory Physiology2018
Arterial stiffness and wave reflection are important components of the ventricular afterload. Therefore, we aimed to assess the arterial wave characteristics and mechanical properties of the proximal pulmonary arteries (PAs) in the hypoxic pulmonary hypertensive rat model. After 21 days in normoxic or hypoxic chambers (24 animals in each group), the animals underwent transthoracic echocardiography and pulmonary artery catheterization with a dual-tipped pressure and Doppler flow sensor wire. Wave intensity analysis (WIA) was performed. Artery rings obtained from the pulmonary trunk, right and left PAs and the aorta were subjected to a tensile test to rupture. Collagen and elastin content was determined. In hypoxic rats, proximal PA wall thickness, collagen content, tensile strength per unit collagen, maximal elastic modulus and wall viscosity increased; while the elastin:collagen ratio and arterial distensibility decreased. Arterial pulse wave velocity was also increased and the increase was more prominent in vivo than ex vivo. Wave intensity was similar in the hypoxic and normoxic animals with negligible wave reflection. In contrast, aortic maximal elastic modulus remained unchanged, while the wall viscosity decreased. There was no evidence of altered arterial wave propagation in the proximal PAs of hypoxic rats, while the extracellular matrix protein composition altered and the collagen tensile strength increased. This was accompanied by altered mechanical properties in vivo and ex vivo.

Want to see more papers in your research area? 

Get a customized bibliography.

Request Now

Publication Right Sidebar