Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma.

Peter Olson, Gerald C Chu, Samuel R Perry, Olivier Nolan-Stevaux, Douglas Hanahan
Proceedings of the National Academy of Sciences of the United States of America2011
Preclinical trials in mice represent a critical step in the evaluation of experimental therapeutics. Genetically engineered mouse models (GEMMs) represent a promising platform for the evaluation of drugs, particularly those targeting the tumor microenvironment. We evaluated sunitinib, an angiogenesis inhibitor that targets VEGF and PDGF receptor signaling, in two GEMMs of pancreatic cancer. Sunitinib did not reduce tumor burden in pancreatic ductal adenocarcinoma (PDAC), whereas tumor burden was reduced in the pancreatic neuroendocrine tumor (PNET) model, the latter results confirming and extending previous studies. To explore the basis for the lack of pathologic response in PDAC, we used noninvasive microbubble contrast-enhanced ultrasound imaging, which revealed that sunitinib reduced blood flow both in PDAC and in PNET, concomitant with a reduction in vessel density; nevertheless, PDAC tumors continued to grow, whereas PNET were growth impaired. These results parallel the response in humans, where sunitinib recently garnered FDA and European approval in PNET, whereas two antiangiogenic drugs failed to demonstrate efficacy in PDAC clinical trials. The demonstration of on-target activity but with discordant benefit in the PDAC and PNET GEMMs illustrates the potential value of linked preclinical and clinical trials.

Want to see more papers in your research area? 

Get a customized bibliography.

Request Now

Publication Right Sidebar