Construction of Smart Nanotheranostic Platform Bi-Ag@PVP: Multimodal CT/PA Imaging-Guided PDT/PTT for Cancer Therapy

Zonglang Zhou, Jun Xie, Sihan Ma, Xian Luo, Jiajing Liu, Shengyu Wang, Yuqiang Chen, Jianghua Yan, Fanghong Luo
ACS Omega2021
High-efficiency nanotheranostic agents with multimodal imaging guidance have attracted considerable interest in the field of cancer therapy. Herein, novel silver-decorated bismuth-based heterostructured polyvinyl pyrrolidone nanoparticles (NPs) with good biocompatibility (Bi-Ag@PVP NPs) were synthesized for accurate theranostic treatment, which can integrate computed tomography (CT)/photoacoustic (PA) imaging and photodynamic therapy/photothermal therapy (PDT/PTT) into one platform. The Bi-Ag@PVP NPs can enhance light absorption and achieve a better photothermal effect than bismuth NPs. Moreover, after irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can efficiently induce the generation of reactive oxygen species (ROS), thereby synergizing PDT/PTT to exert an efficient tumor ablation effect both in vitro and in vivo. Furthermore, Bi-Ag@PVP NPs can also be employed to perform enhanced CT/PA imaging because of their high X-ray absorption attenuation and enhanced photothermal conversion. Thus, they can be utilized as a highly effective CT/PA imaging-guided nanotheranostic agent. In addition, an excellent antibacterial effect was achieved. After irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can destroy the integrity of Escherichia coli, thereby inhibiting E. coli growth, which can minimize the risk of infection during cancer therapy. In conclusion, our study provides a novel nanotheranostic platform that can achieve CT/PA-guided PDT/PTT synergistic therapy and have potential antibacterial properties. Thus, this work provides an effective strategy for further broad clinical application prospects.

Want to see more papers in your research area? 

Get a customized bibliography.

Request Now

Publication Right Sidebar