Bibliography

Cancer Research (Contrast)
Top Contrast-Enhanced Cancer Research Papers

- Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma.

- Volumetric and angiogenic evaluation of antitumor effects with acoustic liposome and high-frequency ultrasound.

- Assessing vesicoureteral reflux in live inbred mice via ultrasound with a microbubble contrast agent.

- In vivo bioimaging as a novel strategy to detect doxorubicin-induced damage to gonadal blood vessels.

- Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system.

- Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging.

- Correlation of quantified contrast-enhanced sonography with in vivo tumor response.


- IFN-beta restricts tumor growth and sensitizes alveolar rhabdomyosarcoma to ionizing radiation.
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer.

Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively block growth and recovery of human hepatocellular carcinoma in a rat xenograft model.
Cancer Biol Ther 2009 May;8(9):856-65.

A method for assessing the microvasculature in a murine tumor model using contrast-enhanced ultrasonography.

Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment.

US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice.

Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography.
Lyshchik A, Fleischer AC, Huamani J, Hallahan DE, Brissova M, Gore JC.

The use of three-dimensional ultrasound micro-imaging to monitor prostate tumor development in a transgenic prostate cancer mouse model.
Bibliography – Cancer Research (Contrast)